
142

Module 15 Server-Side Web Development

Module title Server-Side Web Development
Module NFQ level (only if an NFQ level can be
demonstrated)

6

Module number/reference BSCH-SSWD

Parent programme(s)
Bachelor of Science (Honours) in
Computing Science

Stage of parent programme Stage 2
Semester (semester1/semester2 if applicable) Semester 2
Module credit units (FET/HET/ECTS) ECTS
Module credit number of units 5
List the teaching and learning modes Direct, Blended
Entry requirements (statement of knowledge, skill and
competence)

Learners must have achieved
programme entry requirements.

Pre-requisite module titles None
Co-requisite module titles None
Is this a capstone module? (Yes or No) No

Specification of the qualifications (academic, pedagogical
and professional/occupational) and experience required
of staff (staff includes workplace personnel who are
responsible for learners such as apprentices, trainees and
learners in clinical placements)

Qualified to as least a Bachelor of
Science (Honours) level in Computer
Science or equivalent and with a
Certificate in Training and Education
(30 ECTS at level 9 on the NFQ) or
equivalent.

Maximum number of learners per centre (or instance of
the module)

60

Duration of the module
One academic semester, 12 weeks
teaching

Average (over the duration of the module) of the contact
hours per week

3

Module-specific physical resources and support required
per centre (or instance of the module)

One class room with capacity for 60
learners along with one computer lab
with capacity for 25 learners for each
group of 25 learners

143

Analysis of required learning effort

Minimum ratio

teacher / learner
Hours

Effort while in contact with staff
 Classroom and demonstrations 1:60 18
 Monitoring and small-group teaching 1:25 18
 Other (specify)
Independent Learning
 Directed e-learning
 Independent Learning 54
 Other hours (worksheets and assignments) 35
 Work-based learning – learning effort
Total Effort 125

Allocation of marks (within the module)

Continuous
assessment

Supervised
project

Proctored practical
examination

Proctored written
examination

Total

Percentage
contribution

100% 100%

Module aims and objectives
This module introduces the learner to the fundamentals behind server-side web
development. They are introduced to the core concepts behind dynamic, database
driven web development, through server-side scripting and database integration and
learn how to design and build web applications that deliver database information
through server-side HTML pre-processing.

Learners are given practical experience of developing dynamic web sites using these
technologies.

Minimum intended module learning outcomes
On successful completion of this module, the learner will be able to:

1. Explain how server-side dynamic web pages are delivered to end-users

2. Design and build dynamic server-side web sites

3. Integrate relational databases into server-side web applications

4. Build a state-based user experience on top of stateless protocols

5. Address security issues in web development and suggest and implement best
practice solutions

144

Rationale for inclusion of the module in the programme and its contribution to the
overall MIPLOs
This module enables learners to draw upon various concepts they have already been
exposed to, to build dynamic data-driven websites using server-side scripting, client-
side web technologies and relational databases. Appendix 1 of the programme
document maps MIPLOs to the modules through which they are delivered.

Information provided to learners about the module
Learners receive a programme handbook to include module descriptor, module
learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy and
reading materials.

Module content, organisation and structure
Web Application Development

• Web architecture
• Client-Server Relationships
• Three-tier applications
• Web Applications
• GET/POST
• Security

Server-side Programming

• Web scripting (PHP)
• processing form data
• validation
• state management (cookies/sessions)
• Security

Integrating Databases

• Database connectivity
• Security

Module teaching and learning (including formative assessment) strategy
The module is taught as a combination of lectures and lab sessions. The lectures
discuss and explain to learners the various concepts that underpin server-side web
development, from how dynamic web pages are delivered, server-side scripting, to
database integration, security and application design.

In tutorials and practical lab sessions, learners practically apply these concepts by
building a series of small server-side applications and database-backed websites.

145

Assessment is a series of practical assignments of increasing complexity that cover the
core topics. The first is a simple server-side application with a user interface that
writes to flat files. A second application integrates a simple relational database with
a server-side web application. Finally, in groups, learners will plan, design and develop
a complex database-backed web application.

Timetabling, learner effort and credit
The module is timetabled as one 1.5-hour lecture and one 1.5-hour lab per week.

There are 36 contact hours made up of 12 lectures delivered over 12 weeks with
classes taking place in a classroom. There are also 12 lab sessions delivered over 12
weeks taking place in a fully equipped computer lab. The learner will need 45 hours
of independent effort to further develop the skills and knowledge gained through the
contact hours. An additional 44 hours are set aside for learners to work on worksheets
and assignments that must be completed for the module.

The team believes that 125 hours of learner effort are required by learners to achieve
the MIMLOs and justify the award of 5 ECTS credits at this stage of the programme.

Work-based learning and practice-placement
There is no work based learning or practice placement involved in the module.

E-learning
The college VLE is used to disseminate notes, advice, and online resources to support
the learners. The learners are also given access to Lynda.com as a resource for
reference.

Module physical resource requirements
Requirements are for a classroom for 60 learners equipped with a projector, and a 25
seater computer lab for practical sessions with access to SQLite and MySQL, a
development environment (such as Notepad++) and a selection of web browsers
(Chrome, Firefox, Edge) (this may change should better technologies arise).

Reading lists and other information resources
Recommended Text
Ullman, L. (2017) PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide.
Berkeley, California: Peachpit Press.

Secondary reading
Connolly, R. and Hoar, R. (2017) Fundamentals of Web Development. Boston: Pearson.

146

Welling, L. and Thomson, L. (2016) PHP and MySQL Web Development. Hoboken:
Addison Wesley.

Sturgeon, P. (2014) PHP: The Right Way. Lean Publications. Available at:
https://leanpub.com/phptherightway 4

Specifications for module staffing requirements
For each instance of the module, one lecturer qualified to at least Bachelor of Science
(Honours) in Computer Science or equivalent, and with a Certificate in Training and
Education (30 ECTS at level 9 on the NFQ) or equivalent.. Industry experience would
be a benefit but is not a requirement.

Learners also benefit from the support of the programme director, programme
administrator, learner representative and the Student Union and Counselling Service.

Module Assessment Strategy
The assignments constitute the overall grade achieved, and are based on each
individual learner’s work. The continuous assessments provide for ongoing feedback
to the learner and relates to the module curriculum.

No. Description MIMLOs Weighting

1
Simple web application that receives input
from user and writes to text files.

1 15%

2
Simple database backed web application with
reading from and writing to a database.

1,2 25%

3
Group-based project where learners design,
plan and build a complex database-backed
web applications

1,2,3,4,5 60%

All repeat work is capped at 40%.

Sample assessment materials
Note: All assignment briefs are subject to change in order to maintain current content.

4 Last accessed 26/07/2018

147

ASSIGNMENT 1 TITLE: NOTE APP

For this assignment you are to use HTML and PHP to build a simple web application
that allows user to create, read and edit notes.

The app should feature a homepage with a list of notes and the options to add a new
note, edit an existing note or delete notes. Clicking on a note should take the user to
a detail page for that note. The detail page should also feature options for editing
and deleting.

 In total it should have 4 pages:
The home page (listing all current notes)
A note detail page
A note edit page
A new note page

This app does not need a user login system. The notes should be stored as text files.

You can apply a simple amount of CSS to keep the application

Delivery details:
The home page should be named “index.php”.
All files should be contained in a folder named
“lastname_firstname_studentnumber_assignment_01”.
Zip this folder and upload to Moodle.

Assessment Criteria:

All features present and working.
Best practice in PHP.
A useable interface

Learning Outcomes Being Assessed:

Understand how server-side dynamic web pages are delivered to end-users.
Design and build dynamic server-side web sites.

ASSIGNMENT 2 TITLE: STUDENT MANAGEMENT SYSTEM

For this assignment you are to build a student management system to store and
manage all the necessary information Griffith College need to keep about their
students.

The app should provide basic CRUD functionality to allow GCD staff to add, search,
update, and delete learner related information.

148

The app should feature:
A home page to welcome and present the CRUD options: Add, Search, Update,
Delete.

An Add page, with a form to capture the student’s details. This should provide a
form and an “Add” button. When the form is submitted, the data should be
validated before being entered into the database.
Duplicate entries should not be allowed.
Upon success, a message should be displayed e.g. “New student added successfully”
with a link to the homepage.

A Search page. The page should provide a search box and ask users to provide a
student number. After entering a student number and clicking a search button, the
system should display student information if found or display a message (e.g.
“Student not found”)

An Update page: The page should provide a search box and ask users to provide a
student number. After entering a student number and clicking a search button, if the
student is not found it should display a message; otherwise it should display the
student’s existing information displayed in a form with an update button. The user
should be able to update all the information, except for the student number. After
updating, an appropriate message should be displayed.

A Delete Page. Similar to the update page, this should provide a search box and ask
users to provide a student number. After entering a student number and clicking a
search button, if the student is not found it should display a message; otherwise it
should display the student’s existing information displayed as text with a delete
button. Clicking the delete button should delete the entry and display an appropriate
message.

This app does not need a user login system. The students should be stored in a
MySQL database. It should have at least one table.
Form fields should be appropriate and all entered data should be validated.

You can apply a simple amount of CSS to keep the application usable.

Delivery details:
The home page should be named “index.php”.
All files should be contained in a folder named
“lastname_firstname_studentnumber_assignment_01”.
Zip this folder and upload to Moodle.

149

Assessment Criteria:

All features present and working.
Best practice in PHP.
A useable interface

Learning Outcomes Being Assessed:

1. Design and build dynamic server-side web sites.
2. Integrate relational databases into server-side web applications

PROJECT TITLE: SOCIAL NETWORK

For this group assignment you are to design and build a student social network
system. The system should allow users to:

• Sign up for an account
• Log in
• Edit a profile page (including uploading a picture)
• Post updates (short text updates or photo)
• Follow friends
• See updates from friends listed chronologically on a feed
• Like or comment on updates from friends

It should also allow for an admin account which can:
Delete users / posts

You should also add your own features as you see fit, for example:
A photo gallery
A private messaging system

The application should be built in HTML, CSS, PHP & MySQL. You can use a front-end
templating system such as Bootstrap, but the PHP/MySQL should be self-written
using not templates or frameworks.

The database should have as many tables as necessary to accommodate the
features.

Delivery details:
The home page should be named “index.php”.
All files should be contained in a folder named “groupnumber_group_assignment”.
(Group numbers will be provided to all groups)
Zip this folder and upload to Moodle.

In addition to the site, a document should be provided that outlines:
An overview of the system including the features it has.

150

A diagram of the database
A review of the process, including what worked and what didn’t.

This should be named “design_document.pdf” and saved in PDF format. Include this
in the same folder.

Assessment Criteria:
10% - Visual design. Easy to use and understand with consistent navigation
10% - Database Design
30% - System design and implementation. Working features.
20% - Code Quality
10% - Extra features
10% - Security / Form validation
10% - Documentation / Demo

Learning Outcomes Being Assessed:

1. Understand how server-side dynamic web pages are delivered to end-users.
2. Design and build dynamic server-side web sites.
3. Integrate relational databases into server-side web applications
4. Build a state-based user experience on top of stateless protocols
5. Recognize security issues in web development and suggest and implement

best practice solutions.

Notes:
This will be done in groups of 3.
All code must be original
In order to pass, students must present a working and usable application that covers
the basic specifications provided above.

